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Problem Statement 

From social networking sites to law enforcement, many different organizations around the 

world are adopting tools and software that allow them to recognize a person’s face. Facial 
recognition is important for these groups as they can be used for security purposes, network 
building, and even geolocation efforts. There are, however, obstacles in the way of creating such 

a system. The ways a face can be presented to a camera (ie. black and white vs color, shading 
on the face), or lack of past facial data to compare a new face with. Basically, you are not 

guaranteed to have every face flowing through a database to be presented to the detecting 
software in the same way. To combat this, certain methods have thus been adopted with the 
hope of mitigating some of these factors. Our team decided to work on a method that would be 

able to detect and output key features from a person’s face. However, there are many ways that 
could be used, so we attempted to find the best method for this. 

 
Data Source 
Using data from an online source, we found a dataset of faces which we used to test our 

methods. The dataset contains two-dimensional, 8-bit, grayscale facial images with 
corresponding facial points listed in typical (x,y) coordinate format. Each image is 

represented by a 96 x 96 pixel matrix, whose entries are integers from 0 to 255. These 
integral values are meant to characterize the intensity of each pixel, for a total of 9216 

pixels in each image. The dataset is a matrix of size 7049 x 31, where each row is made 
up of one facial image, out of 7049, with 30 columns made up of the 15 facial points’ 
(x,y) coordinates, and finally the 9216 numbers representing the pixel matrix of each 
image melted row by row. The 15 facial points marked in each image correspond to 

nose, eye, mouth, and eyebrow locations on the face.  
 

 
Image 1: Example of image from dataset. Key facial features marked 



Data source:   https://www.kaggle.com/c/facial-keypoints-detection/data , 
 

Methodology 
    As mentioned previously, each image is represented as a 96x96 pixel matrix, and for the data 
used to train our solutions, fifteen key facial features for each corresponding picture are marked 

in the dataset matrix. Our methodology thus entailed taking the given points for each face and 
using them to predict where a new image’s points would be.  We use hold-out cross-validation 

with 80% as training dataset and 20% as testing dataset. 
 
Pre-processing methods 
    We used several different methods to analyze and prepare the pictures for further analysis. 
One such way was through local binary patterns, which converted pixels into a binary variable 

based around a center point. This reduced the sensitivity of an image to illumination from any 
light source. Since each picture can be represented through matrices, and each matrix from the 
photo dataset’s vector values are indicative of pixel intensity, LBP can be done as follows  
 

1. Choose a center point 
2. If a surrounding data point is higher, change value to 1, otherwise change to 0  

3. Transform the binary sequence to decimal 
4. Output new image 

        
        Images 2,3: Before, after picture of LBP analysis 

 

   
Figure 1: Representation of LBP analysis 

 
We also performed Principal Component Analysis on each picture, with the following steps.  
 

1. Obtain face images I1, I2, ….., Im 

2. Represent every image Ii as a N^2 * I vector Γi 
3. Compute the average face vector Ψ= 1/M ∑ Γi 

https://www.kaggle.com/c/facial-keypoints-detection/data


4. Subtract the mean face: Φi = Γi - Ψ 
5. Compute the covariance matrix C = 1/M ∑Φi*Φ^T = AA^T 

6. Calculate the ordered sequence of eigenvectors (eigenfaces) and eigenvalues of 
covariance matrix 

7. Project dataset over the 200 principal eigenfaces 
 

 
        Image 4: First 16 eigenfaces 

 

    From the figure below, it can be seen that the first 200 eigenfaces or components explain 
about 93% of the data variance. 

 
Figure 2: Cumulative variance vs number of principal components considered 

 
The image below shows a reconstructed face using the first 200 eigenfaces. 

 
Image 5: Face projected over the 200 principal components 



By using these methods to further process each picture, we made it easier to identify 
more prominent features in a face when we implement supervised learning methods. 
 
Supervised learning methods 

After preprocessing the data, we applied two supervised learning methods in order to 

identify facial features: Mean Patch Searching (MPS) and Linear Regression (LR). 
 
Mean patch searching involves taking windows of certain size around the training (x,y) of 

a facial feature for all training images, and then taking the average obtaining the mean patch of 
the facial feature. After that, a window of the same size is superimposed over each testing 

image in different positions, searching around the mean (x,y) of the requested facial feature the 
set that has a max correlation within the mean patch. The positon of that window is the 
predicted (x,y) of the facial feature in a testing image. 

 

 
Image 6: Mean Eye facial feature with 21x21 window 

 
Linear regression involves taking all pixels inside a window of certain size around the 

mean (x,y) of a facial feature as explanatory variables, and the position (x,y) of the facial 

feature as a response variable. 
 
We then did this for all faces, with the three different types of preprocessed pictures, to 

find the associated mean square error of each, the smallest of which will be our selected 
method. 
 
 

Evaluation and Final Results 
In this section we show the results in terms of the individual and total Mean Squared Error 

(MSE) of key facial feature coordinates in pixel units. We obtained 90 values of individual errors 
corresponding to the combination of 3 preprocessing methods, 2 supervised learning methods 

and 15 key facial features. These values are displayed using boxplots in order to compare 
methods and facial features. 
 

Figure 3 below compares the different combinations of preprocessing and supervised 
learning methods. Label “None” was assigned to results without using pre-processing method. 



We can see a significant improvement when PCA is applied to linear regression. On the other 
hand, there is no improvement when data is pre-processed using Local Binary Patterns. 

 
Figure 4 compares the different key facial features. Here we can see that eye and 

eyebrow features (left boxes) have lower errors than nose and mouth features (right boxes). 
Also we can see that features located at the right side of the face (REye, REyeb, MouthRC) have 
lower errors than their corresponding left sided features (LEye, LEyeb, MouthLC). 

             
Figures 3, 4: Boxplots comparing methods and key facial features in terms of individual feature MSE 

 
The table below shows the total Mean Squared Error for each combination of pre-

processing and supervised learning methods. This confirms that the best performance was 

achieved by PCA+ Linear Regression method. 
 

Table 1: Table comparing methods in terms of total MSE 

Preprocessing 

methods 

Supervised Learning Methods 

Mean Patch Searching  Linear Regression  

Unaltered Image 3.74 3.80 

LBP altered Image 3.88 3.78 

PCA altered Image 3.76 2.98 

 
The previous results were obtained using a square window of side 21 pixels and 200 

principal components when PCA was used as a pre-processing method. We investigated the 

effect of change these two parameters for the PCA + Linear Regression method. 
 

Figure 5 shows the error for different numbers of components between 100 and 300. Here 
the minimum error was obtained with around 200 components, hence our previous selection was 
correct. However, the range of errors is only around 0.05 pixels, thus there is no big difference 

in choosing anything between 100 and 300 principal components. 
 



Figure 6 shows the error for different window sides. Here the error decreases when the 
window side increases up to 15 pixels. For windows of side larger than 15 pixels, the error 

remains constant. 

     
Figure 5,6: Graphs showing optimal number of principal components and window size 

 
    From the above figures, it can be seen that when using PCA with linear regression, we will 
have the best method for finding the key facial features in a picture. We can also see that Local 

Binary Pattern doesn’t really change the effectiveness in any meaningful way. To see the final 
solution in action, each team member also implemented the analysis with a picture of their own 

face to see the result. 
 

 
Image 7,8,9: Key Facial Features detected by PCA+LR analysis 

 
Overall, our final method was able to accurately predict facial features within a reasonable 

margin, and can be used to add to the robustness of other software for facial detection. 
 

In this project, all team members contributed equal amounts to the assignment. Everyone 
had a say in determining the project scope and locating the data source used. Hugo worked on 

the code that pre-processed the images, Mahadevan worked on the implementing these 
processed images with mean patch searching and linear regression, and James performed the 

mean squared error evaluations of each method, as well as writing up the first drafts of the 
report. The other members helped edit the final report. 
 


